初めに
本記事では、数学Bの数列で学ぶ \(\sum\) に関して、統計に必要な情報をまとめます。
和の記号Σの定義
自然数 \(n\)、数列 \(\{a_n\}\) に対して、
\[
\sum_{k = 1}^n a_k = a_1 + a_2 + \cdots + a_n
\]
数列の和の公式
公式一覧
\[\begin{align}
& \sum_{k = 1}^n a = na \\
& \sum_{k = 1}^n k = \frac{1}{2} n (n + 1) \\
& \sum_{k = 1}^n k^2 = \frac{1}{6} n (n + 1) (2n + 1) \\
& \sum_{k = 1}^n k^3 = \left\{\frac{1}{2} n (n + 1) \right\}^2 \\
& \sum_{k = 1}^n ar^{k \ – \ 1} = \frac{a(1 \ – \ r^n)}{1 \ – \ r} = \frac{a(r^n \ – \ 1)}{r \ – \ 1} \ (r \neq 1 \text{のとき})
\end{align}\]
ただし、\(a, r\) は定数である。
証明
\(\displaystyle{\sum_{k = 1}^n a = na}\)
\(a\) は定数より
\[
\sum_{k = 1}^n a = a + a + \cdots + a = na
\]
\(\displaystyle{\sum_{k = 1}^n k = \frac{1}{2} n (n + 1)}\)
\[\begin{align}
\sum_{k = 1}^n k &= 1 + 2 + \cdots + n \\
\sum_{k = 1}^n k &= n + (n \ – \ 1) + \cdots + 1\\
\end{align}\]
辺々を足して、
\[\begin{align}
2 \sum_{k = 1}^n k &= (n + 1) + (n + 1) + \cdots + (n + 1) \\
2 \sum_{k = 1}^n k &= n (n + 1) \\
\sum_{k = 1}^n k &= \frac{1}{2} n (n + 1)
\end{align}\]
\(\displaystyle{\sum_{k = 1}^n k^2 = \frac{1}{6} n (n + 1) (2n + 1)}\)
\((k + 1)^3 = k^3 + 3k^2 + 3k + 1\) より \((k + 1)^3 \ – \ k^3 = 3k^2 + 3k + 1\) である。よって、
\[\begin{align}
(n + 1)^3 \ – \ n^3 &= 3 n^2 + 3 n + 1 \\
n^3 \ – \ (n \ – \ 1)^3 &= 3(n \ – \ 1)^2 + 3(n \ – \ 1) + 1 \\
(n \ – \ 1)^3 \ – \ (n \ – \ 2)^3 &= 3(n \ – \ 2)^2 + 3(n \ – \ 2) + 1 \\
& \vdots \\
3^3 \ – \ 2^3 &= 3 \cdot 2^2 + 3 \cdot 2 + 1 \\
2^3 \ – \ 1^3 &= 3 \cdot 1^2 + 3 \cdot 1 + 1
\end{align}\]
辺々足して
\[\begin{align}
(n + 1)^3 – 1^3 &= 3 \sum_{k = 1}^n k^2 + 3 \sum_{k = 1}^n k + n \\
n^3 + 3n^2 + 3n &= 3 \sum_{k = 1}^n k^2 + \frac{3}{2} n(n + 1) + n \\
3 \sum_{k = 1}^n k^2 &= n^3 + 3n^2 + 3n – \frac{3}{2} n(n + 1) – n \\
3 \sum_{k = 1}^n k^2 &= n^3 + \frac{3}{2} n^2 + \frac{1}{2} n \\
3 \sum_{k = 1}^n k^2 &= \frac{1}{2} n (2n^2 + 3n + n) \\
\sum_{k = 1}^n k^2 &= \frac{1}{6} n (n + 1)(2n + 1) \\
\end{align}\]
\(\displaystyle{\sum_{k = 1}^n k^3 = \left\{\frac{1}{2} n (n + 1) \right\}^2}\)
\((k + 1)^4 = k^4 + 4k^3 + 6k^2 + 4k + 1\) より \((k + 1)^4 \ – \ k^4 = 4k^3 + 6k^2 + 4k + 1\) である。よって、
\[\begin{align}
(n + 1)^4 \ – \ n^4 &= 4 n^3 + 6 n^2 + 4 n + 1 \\
n^4 \ – \ (n \ – \ 1)^4 &= 4(n \ – \ 1)^3 + 6(n \ – \ 1)^2+ 4(n \ – \ 1) + 1 \\
(n \ – \ 1)^4 \ – \ (n \ – \ 2)^4 &= 4(n \ – \ 2)^3 + 6(n \ – \ 2)^2 + 4(n \ – \ 2) + 1 \\
& \vdots \\
3^4 \ – \ 2^4 &= 4 \cdot 2^3 + 6 \cdot 2^2 + 4 \cdot 2 + 1 \\
2^4 \ – \ 1^4 &= 4 \cdot 1^3 + 6 \cdot 1^2 + 4 \cdot 1 + 1
\end{align}\]
辺々を足して、
\[\begin{align}
(n + 1)^4 \ – \ 1^4 &= 4 \sum_{k = 1}^n k^3 + 6 \sum_{k = 1}^n k^2 + 4 \sum_{k = 1}^n k + n \\
4 \sum_{k = 1}^n k^3 &= (n + 1)^4 \ – \ 1 \ – \ 6 \sum_{k = 1}^n k^2 \ – \ 4 \sum_{k = 1}^n k \ – \ n \\
4 \sum_{k = 1}^n k^3 &= n^4 + 4n^3 + 6n^2 + 4n \ – \ n(n + 1)(2n + 1) \ – \ 2n(n + 1) \ – \ n \\
4 \sum_{k = 1}^n k^3 &=n^4 + 2n^3 + n^2 \\
\sum_{k = 1}^n k^3 &= \frac{1}{4} n^2 (n + 1)^2 \\
\sum_{k = 1}^n k^3 &= \left\{\frac{1}{2} n (n + 1) \right\}^2
\end{align}\]
\(\displaystyle{\sum_{k = 1}^n ar^{k \ – \ 1} = \frac{a(1 \ – \ r^n)}{1 \ – \ r} = \frac{a(r^n \ – \ 1)}{r \ – \ 1}}\)
\[\begin{align}
\sum_{k = 1}^n ar^{k \ – \ 1} &= a + ar + ar^2 + \cdots + ar^{n \ – \ 1} \\
r \sum_{k = 1}^n ar^{k \ – \ 1} &= \ \ \ \ \ \ \ ar + ar^2 + \cdots + ar^{n \ – \ 1} + ar^n
\end{align}\]
辺々を引いて
\[\begin{align}
\sum_{k = 1}^n ar^{k \ – \ 1} \ – \ r \sum_{k = 1}^n ar^{k \ – \ 1} &= a – ar^n \\
(1 \ – \ r) \sum_{k = 1}^n ar^{k \ – \ 1} &= a(1 \ – \ r^n) \\
\sum_{k = 1}^n ar^{k \ – \ 1} &= \frac{a(1 \ – \ r^n)}{1 \ – \ r} \ (\because r \neq 1)
\end{align}\]
\(\frac{a(1 \ – \ r^n)}{1 \ – \ r} = \frac{a(r^n \ – \ 1)}{r \ – \ 1}\) もすぐにわかる。
和の記号Σの性質
性質
数列 \(\{a_n\}, \{b_n\}\)、定数\(p, q\) において、次が成り立つ。
\[
\sum_{k = 1}^n (p a_k + q b_k) = p \sum_{k = 1}^n a_k + q \sum_{k = 1}^n b_k
\]
証明
\[\begin{align}
& \sum_{k = 1}^n (p a_k + q b_k) \\
= & (p a_1 + q b_1) + (p a_2 + q b_2) + \cdots + (p a_n + q b_n) \\
= & p(a_1 + a_2 + \cdots + a_n) + q(b_1 + b_2 + \cdots + b_n) \\
= & p \sum_{k = 1}^n a_k + q \sum_{k = 1}^n b_k
\end{align}\]
練習問題
基本問題
練習問題1
問題
次の値を求めよ。
(1) \(\displaystyle{\sum_{k = 1}^{10} k}\)
(2) \(\displaystyle{\sum_{k = 1}^{24} \frac{1}{4} k^2}\)
(3) \(\displaystyle{\sum_{k = 1}^{100} (k^2 + 4k)}\)
解答
(1)
\[
\sum_{k = 1}^{10} k = \frac{1}{2} \cdot 10 \cdot 11 = 55
\]
(2)
\[\begin{align}
\sum_{k = 1}^{24} \frac{1}{4} k^2 &= \frac{1}{4} \cdot \frac{1}{6} \cdot 24 \cdot 25 \cdot (2 \cdot 24 + 1) \\
&= 1225
\end{align}\]
(3)
\[\begin{align}
\sum_{k = 1}^{100} (k^2 + 4k) &= \frac{1}{6} \cdot 100 \cdot 101 (2 \cdot 100 + 1) + 4 \cdot \frac{1}{2} \cdot 100(100 + 1) \\
&= 338350 + 20200 \\
&= 358550
\end{align}\]
練習問題2
問題
次の値を求めよ。
(1) \(\displaystyle{\sum_{k = 1}^n 2k}\)
(2) \(\displaystyle{\sum_{k = 1}^n (k^2 + k)}\)
(3) \(\displaystyle{\sum_{k = 1}^n (k + 2)^2 \ – \ \sum_{k = 1}^n (2k + 3)}\)
(4) \(\displaystyle{\sum_{k = 1}^n 2^{k + 3}}\)
解答
(1)
\[
\sum_{k = 1}^n 2k = 2 \times \frac{1}{2} n (n + 1) = n (n + 1)
\]
(2)
\[\begin{align}
\sum_{k = 1}^n (k^2 + k) &= \sum_{k = 1}^n k^2 + \sum_{k = 1}^n k \\
&= \frac{1}{6} n(n + 1)(2n + 1) + \frac{1}{2} n (n + 1) \\
&= \frac{1}{6} n (n + 1) (2n + 1 + 3) \\
&= \frac{1}{6} n (n + 1)(2n + 4) \\
&= \frac{1}{3} n (n + 1)(n + 2)
\end{align}\]
(3)
\[\begin{align}
\sum_{k = 1}^n (k + 2)^2 \ – \ \sum_{k = 1}^n (2k + 3) &= \sum_{k = 1}^n (k^2 + 4k + 4 – 2k – 3) \\
&= \sum_{k = 1}^n (k^2 + 2k + 1) \\
&= \sum_{k = 1}^n (k + 1)^2 \\
&= 2^2 + 3^2 + \cdots + (n + 1)^2 \\
&= \sum_{k = 1}^{n + 1} k^2 \ – \ 1^2 \\
&= \frac{1}{2} (n + 1) \{(n + 1) + 1\} \ – \ 1 \\
&= \frac{1}{2} (n + 1)(n + 2) \ – \ 1 \\
&= \frac{1}{2} n^2 + \frac{3}{2} n
\end{align}
\]
(4)
\[\begin{align}
\sum_{k = 1}^n 2^{k + 3} &= \sum_{k = 1}^n 2^4 \cdot 2^{k \ – \ 1} \\
&= \frac{2^4 (2^n \ – \ 1)}{2 \ – \ 1} \\
&= 2^{n + 4} \ – \ 16
\end{align}\]